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Vibrational responses of a cantilever beam are 
measured and analyzed using accelerometers, a 
vibration table, and a data acquisition system. We see 
how a sine wave differs from a square wave and the 
frequency make up of both waves using a Fourier 
transform of the waves, which displays the incurring 
frequencies and their respective amplitudes. We then 
use accelerometers at two locations, one at the end of 
an aluminum beam and one at the node of the 2nd 
mode of the beam to model a one degree of freedom 
system and obtain much information from this such 
as damping properties of the beam and the effect the 
accuracy of the Fast Fourier transform with respect 
to the theoretical calculation of the frequency of the 
beam based on its geometric and material properties. 
Lastly, we excite the beam at different frequencies 
and measure the amplitude of the wave of the 
response form the beam. We notice a peak in 
amplitude at 13.5 Hz, signaling to us that resonance 
occurs at 13.5 Hz. We also obtain the amplitude ratio 
through this data and observe that it is highest at 
resonance because the excitation frequency highly 
matches the natural frequency of the beam.  
 
INTRODUCTION 
 In today’s world of complex 
innovations, vibrational analysis is essential to 
the majority of mechanisms. The purpose of 
analyzing vibrations is to see the types of loads 
acting on structures and to verify mathematical 
models to ensure that cracks and damages are 
prevented and/or detected immediately. To 
analyze vibrations in the modern world, we use 
sensors to measure various things and convert 
these quantities to physical quantities of 
interest. In this lab, we use accelerometers, 
which generate voltage signals that are 
proportional to the acceleration they undergo 
and we convert this voltage to a quantity of 
physical measurements. 
 This lab consists of 3 main parts. We 
begin by analyzing the responses of a sine and 
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Figure 1. Vibrating Table and Beam 

 

square wave using the input wave and response 
as well as the Fourier Transform of the 
response. Second, we analyze the response of a 
free vibrating cantilever beam, measuring 
acceleration from 2 locations of the beam, one 
at a node and the other at the end of the beam. 
Lastly, we measure the response of the beam to 
sinusoidal excitations at different frequencies 
to ascertain the damping properties of the 
beam. To accomplish all these tasks, we use an 
accelerometer, a power amplifier paired with a 
vibration table and aluminum alloy cantilever 
beam (shown together in Figure 1), and a data 
acquisition system. 
  
 
 
 
 
 
 
 
Figure 2. System with Single Degree of Freedom 

The basic system we observe for 
vibrational analysis is that of a single degree of 
freedom, as shown in the diagram in Figure 1. 
Using the equations of motions and summing 
them in the diagram in Figure 2, we obtain 
equation 1.  

        [1] 
 

Here, m is the mass of the system, c is a 
measure of the damping force, and k is the 
spring constant, and F(t) is the external force 
(excitation) on the system. Here, ωn

2= k/m and 
we can set c/m = 2ζωn, where ζ is the damping 
coefficient. Solving this equation gives us 
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many properties of the system, like the 
damping properties, which tell us the rate at 
which the signal will fade or not, which can be 
a very important quantity in many situations. In 
the case of this lab, we analyze an aluminum 
cantilever beam with dimensions 1” width x 
0.5” thickness x 32” length. The vibration 
occurs along the horizontal axis of the width. 
Equation 2 gives the partial differential 
equation that models this behavior. 

 

         [2] 
  
 In Equation 2, ü(x,t) is the deformation 
of the beam at location x and time t, the L 
operator represents the shear force in the beam, 
and ρ is the density of the material per unit 
length. Lastly, c(x) represents the damping 
effects present whose nature is unknown for 
the time being. We use a proportional damping 
assumption, where c/ρ = 2ζω. We then use 
separation of variables, to obtain Equation 3. 
     

           [3] 
  
 A little mathematical manipulation and 
substitution in the above equations results in 
equations 4 and 5. 

          𝐸𝐼 !
!!
!!!

= 𝜔!𝜌𝜑                          [4] 
 
           [5] 
 We now apply the necessary boundary 
and initial conditions to Equations 4 and 5. 
Equation 4 yields an infinite set of independent 
eigenfunctions or modes expressed in 
Equations 6, 7, 8, and 9. 
 
             [6] 
 

 
             [7] 
 
             [8] 
      

        [9] 
 
Next, we assume that we are in an 
underdamped system, where (ζ2<1) and thus 

obtain Equation 10, where Cr is related to the 
initial displacement, θ represents the phase 
angle and qr(t) are the response functions 
where r represents the mode that it is for. 
Equation 11 gives the eigenvalues for the first 
3 modes of the fixed free beam. 
 

        [10] 
            [11] 
These eigenfunctions are also called 

shape functions because they determine the 
shape of the vibrating beam. The nth mode has 
n-1 crossings in the beam shape. In this lab, for 
the beam we use, two modes are sufficient for 
an accurate enough analysis. 

Next, we place one accelerometer at 
position x = x1. Equation 12 gives the 
acceleration of the beam at this point. As you 
go along the length of the beam, you will get 
different contributions from the first and 
second modes. We then find the zero crossing 
point location of the second mode by setting 
equation 7 equal to 0, setting r = 2 and solving. 
We then get Equations 13. 

            [12] 
 
               [13] 
 

We thus eliminate the effects of the 
second mode and essential make this a single 
degree of freedom problem, which is much 
easier to solve. It can also be shown that since 
the beam we are considering is only slightly 
damped, we can show by differentiating 
equation 9 to show that the acceleration at each 
beam location is proportional to the 
displacement at that point. 

Next, to understand how a Fourier 
transform works, it is important to understand 
its use. One uses a Fourier transform to extract 
data about the frequency content of data 
sample. This is high importance in vibrational 
analysis because it lets you see what kind of 
response you are getting, a natural and stable or 
varied and mixed frequency response. Equation 
14 is used as the basis of the Fourier Transform 
along with many advanced computer 



  NOVEMBER 7, 2017 

DEEP PATEL XXX-XX-0639 TA: SIQI DU 3 

algorithms to get an accurate account of the 
frequency spectrum. 
 
     [14] 
 
 The last part of the lab deals with a 
harmonic excitation, f(t) =Re{Aeiωt}, which 
alters equation 5 to be Equation 15. 
                      [15] 
 
 The coefficients Ar depend on the 
magnitude of the force f and the location at 
which the excitation is done. To get a solution 
to this equation, we assume a solution of the 
form, qr (t) =Br eiωt  and obtain Equations 16 
and 17. 
      
                      [16] 
 
           [17] 
 
RESULTS AND DISCUSSION 
 

We begin the lab by recording sine and 
square waves using the function generator. 
Using a Fourier transform, we obtain the 
frequency spectra for the sinusoidal and square 
wave, shown in Figure 3. 

 
 
 
 
 
 
 
 

    
 

Figure 3. Sine (top) and Square (bottom) Wave 
Frequency Spectra. 

Figure 3 makes the difference in the 
frequency makeup between the two graphs 
very obvious. The sine wave, as expected only 
consists of one frequency, which was the input 
frequency of the waveform. On the other hand, 
the square wave is made up of many 

frequencies, with the highest amplitude being 
that of the lowest frequency and the amplitude 
lessens as the frequency increases. We now 
recreate the sine and square waveforms using 
this information from the spectra. For the sine 
wave, the peak amplitude is 0.05 VDC and the 
frequency is 2 Hz. The result of the sine graph 
is shown in Figure 4.  The two waveforms are 
identical in amplitude and frequency to the 
naked eye. The only difference is that at time 
t=0 the reconstructed waveform starts at 
voltage 0, whereas the measured sine graph 
starts at a positive voltage of about 0.03 VDC. 
Likely, this may be due to the signal generator 
not being set to 0 at the start of the experiment.  
 
 
 
 
 
 
 
 

Figure 4. Sine Measured Waveform and 
reconstructed waveform 

 

 For the square wave, Table 1 shows the 
frequencies and associated amplitudes from the 
frequency spectra. 

To show the impact of the different 
frequencies, we plot the response using only 
the first peak, the first 5 peaks, and all the 
peaks and show it in Figure 5. The figure 
shows that as the number of frequency peaks 
used increases, the graph looks more and more 
like the square graph we measured. 

Table 1. Square Wave Freq. and Amplitudes 
  

Frequency 
(Hz) 

Amplitude 
(VDC) 

Frequency 
(Hz) 

Amplitude 
(VDC) 

2 
6 

10 
14 
18 
22 
26 
30 
34 
38 

0.0644 
0.0215 
0.0129 

0.009176 
0.007127 
0.005824 
0.004982 
0.004311 
0.003762 
0.003391 

46 
50 
54 
58 
62 
66 
70 
74 
78 
82 

0.002776 
0.002567 
0.002328 
0.002242 
0.00212 

0.001971 
0.001811 
0.00177 

0.001594 
0.001559 

42 0.003096   
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Figure 5. Square Wave and Reconstructed 
Waves using 1, 5, and all peaks 

 

In the next part of the lab, we obtain the 
free vibrating response of the cantilever beam 
from an excitation at two locations of the beam: 
at the node of the 2nd mode, and at the end of 
the beam. The waveform and spectra at the two 
locations are shown in Figures 6 and 7. The two 
waveform graphs are similar in shape, but the 
amplitude at location 2 is nearly double that at 
location 1 because it was probably deflected 
more initially. It seems like the damped effect 
is more prevalent at location 2 than 1, but this 
may be just due to the higher initial deflection. 
The frequency amplitude spectra show that at 
location 1, there is only one frequency whereas 
at location 2 there are two frequencies. This is 
because at location 1 there is only 1 mode 
acting on that location because the second 
mode’s crossing is at that location. For the end 
of the beam, both modes contribute to the 
response. 
 Using Equation 8 and 11, we calculate 
the theoretical values of the natural frequency 
and convert it to Hz by dividing by 2Π 

(Calculations in Appendix). We obtain f1 = 
0.79855 Hz and f2 = 5.005 Hz. We compare 
these values with the measured wave by 
obtaining the time between 7 peaks and taking 
the average to get the approximate period T. 
Using the relationship f = 1/T, we get the 
measured frequency to be 16.67 Hz. 

Table 2 shows the values of the 
theoretical frequencies calculated using 
equations 8 and 11, and the material properties 
of the aluminum beam used. It also shows the 
frequencies read from the frequency spectrums 
at each location and the average frequency 

 
 
 
 
 
 
 
 
 

 
 

Figure 6. Free Response Location 1 (Node of 
2nd Mode) Wave (top) & Spectra (bottom) 

    
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Free Response Location 2 (End of 

Beam) Wave (top) & Spectra (bottom) 
 

obtained from the period of the 1st location 
waveform. The % difference for the average is 
quite low at around 5% response. The freq.’s 

 
 
 
 
 
 
 

 
Figure 8. Amplitude Peak Curve 

Table 2. Measured vs. Theoretical Frequencies  
      

 F (Hz) % Difference 
Theoretical w1 
Theoretical w2 

Average w1 
Spectrum w1 

15.87 
99.48 

16.6667 
14.2460 

- 
- 

5.041 
10.233 

Spectrum  w2 86.9754 12.570 
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Next, we obtain the amplitude of the 
peaks in the waveform of the free response at 
location 1 and plot it as shown in Figure 8. As 
expected, the curve looks like an exponential 
decay, which is consistent with the damping we 
can expect in the cantilever beam. Next, we 
make an exponential fit of the data and obtain 
an exponential equation for the curve of the 
form 𝐷𝑒!!!!! whose values are shown in table 
3. Next, we use Equation 18 to get what is 
called the logarithmic decrement, from which 
we can approximate the damping factor as ζ ≅ 
δ/2π by assuming small values for δ. The 
results of the first 10 peaks are in Table 3. 

 
     [18] 

There are many reasons why the 
logarithmic decrement is not the same 
throughout response. The weight of the 
accelerometer may affect the damping behavior 
as well as the exactness of the location at which 
it is placed relative to the node of the 2nd mode. 
Another way of identifying the damping 
properties is by doing a linear fit of the 
amplitude curve and comparing that. 
 
Table 3. Log Decrement and Damping Factor 
Peak # q(ts) T δ (btw ts 

& ts+1) 
ζ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Curve 

2.0800    
1.9580    
1.7969    
1.7041    
1.6455    
1.5970    
1.5576    
1.5186    
1.4990    
1.4551    
1.4410    
1.4112 
1.3965    
1.3672    
1.3574    
1.3330    
1.3232    
1.2988    
1.2891    
1.2647 

Fit 

0.0623    
0.0713    
0.0708    
0.0708    
0.0708    
0.0710    
0.0706    
0.0713    
0.0703    
0.0708    
0.0705    
0.0705  
0.0700    
0.0705    
0.0703    
0.0706    
0.0707    
0.0706    
0.0708    

- 

0.0604    
0.0859    
0.0530    
0.0350    
0.0299    
0.0250    
0.0254    
0.0130    
0.0297    
0.0097  

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

D=1.5385 

0.0096    
0.0137    
0.0084    
0.0056    
0.0048    
0.0040    
0.0040    
0.0021    
0.0047    
0.0015     

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

ζ=0.0691 
 

 Finally, for the last part of lab we look 
at resonance by exciting the beam with forces 
of varying frequencies. By observing where the 
peak in amplitude occurs, we see at what 
frequency resonance occurs. Table 4 shows the 
input and output amplitudes for all the 
frequencies measured. The peak is clearly at a 
frequency of 13.5 Hz, which is the natural 
frequency of the beam under harmonic 
excitation.  
 
Table 4. Input & Output Amplitude Peaks  
      

F (Hz) Ainput(f) (VDC) Aoutput(f) (VDC) 
    2.0000 
    2.5000 
    3.0000 
    3.5000 
    4.0000 
    4.5000 
    5.0000 
    5.5000 
    6.0000 
    6.5000 
    7.0000 
    7.5000 
    8.0000 
    8.5000 
    9.0000 
    9.5000 
   10.0000 
   10.5000 
   11.0000 
   11.5000 
   12.0000 
   12.5000 
   13.0000 
   13.5000 
   14.0000 
   14.5000 
   15.0000 
   15.5000 
   16.0000 
   16.5000 
   17.0000 
   17.5000 
   18.0000 
   18.5000 
   19.0000 
   19.5000 
   20.0000 
   30.0000 
   40.0000 
   50.0000 

0.2565 
0.3337 
0.4056 
0.4727 
0.5321 
0.5824 
0.6215 
0.6462 
0.6641 
0.6713 
0.6699 
0.6622 
0.6486 
0.6284 
0.6021 
0.5728 
0.5413 
0.5026 
0.4653 
0.4032 
0.3141 
0.1745 
0.1849 
1.1109 
1.3514 
1.0289 
0.8740 
0.7872 
0.7231 
0.6769 
0.6424 
0.6133 
0.5889 
0.5710 
0.5519 
0.5371 
0.5244 
0.3603 
0.2664 
0.2215 

0.0612 
0.0815 
0.1014 
0.1216 
0.1417 
0.1611 
0.1797 
0.1966 
0.2135 
0.2301 
0.2464 
0.2632 
0.2817 
0.3016 
0.3241 
0.3519 
0.3895 
0.4416 
0.4961 
0.5986 
0.7649 
1.0900 
1.6993 
3.1882 
2.3571 
1.2989 
0.8787 
0.6737 
0.5330 
0.4392 
0.3718 
0.3186 
0.2778 
0.2475 
0.2215 
0.2009 
0.1840 
0.0877 
0.0508 
0.0461 
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Furthermore, we notice that the input 
amplitude is not constant throughout the 
frequencies. It varies at almost all the 
frequencies in our measurements. This may be 
because as the frequency is changed, it takes 
time for the amplitude to become steady from 
the change, which is not accounted for in the 
quick transitions in frequencies. 

 
 
 
 
 
 

 
 

Figure 9. Frequency Response of 2nd derivative 
We non-dimenionalize the experimental 

amplitude ratio using Equation 19, plot it in 
Figure 9 and compare it to the estimated 
theoretical curve using the damping coefficient. 
The theoretical curve’s peak is exactly at the 
unity ratio, meaning, whereas the experimental 
is a little to the left of it. Otherwise, the ratios 
are quite similar in shape, with the theoretical 
being only a little wider. 

 
 [19] 

 
 
 
 

 
 
 
 

 
Figure 10. Free Response Resonance Wave 
 

 
 
 
 

 
 
Figure 11. Free Response Resonance Spectra   

 Lastly, we can see from Figures 11 that 
there are two main dictating modes by noting 
the two large frequencies. From Figure 10, we 
see that at resonance, there is no damping and 
the response is constant and non-fading. As you 
can see from the excitation and response curves 
in Figure 10, the two waves are exactly out of 
phase. This tells that there is a 180 degree phase 
lag between the two and thus doubles the 
amplitude of the wave. 

Some of the sources of error that could 
have arisen in this lab are in instrumentation 
error, errors in movement from the room, such 
are pushing the vibration table, and other 
aerodynamic forces such as wind that could 
distort the frequency/amplitude of the beam 
vibration. In general, the results were very close 
to what was expected based on theory. 
 
CONCLUSIONS 
 
In this lab we learn how to make vibrational 
measurements in a digital environment for accurate 
measurements and analysis. We learned how to use 
vibrational equations to our advantage especially in 
the second part of the lab to simplify the system. 
We see that a square wave is made of multiple 
sinusoidal waves of different frequencies of 
different amplitudes as seen by the Fourier 
transform frequency spectra and a reconstruction of 
the wave. Next, we see that we can model a one 
degree of freedom system by measuring 
acceleration at the node of a mode of the beams 
vibration by placing an accelerometer there and thus 
singling out the other mode’s effect on the beam’s 
vibration. We obtain the theoretical frequency of the 
beam using the many equations mentioned and 
compare it to measured frequencies using the 
spectra and an average using the waveform itself. 
Lastly, we determine the resonance frequency by 
getting the spectral peaks at different frequencies 
and seeing at which frequency the largest amplitude 
occurs. We also learn how to analyze this resonance 
behavior and non-dimensionalize it to compare with 
other data. 
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APPENDIX 

MatLab code: 
% Part 1 
% sine wave 
y = @(t) 0.05*sin(2*2*pi*t); 
 
y1 = @(t) 0.0644*sin(2*2*pi*t); 
 
y5 = @(t) 0.0644*sin(2*2*pi*t) + 
0.0215*sin(6*2*pi*t) +  
0.0129*sin(10*2*pi*t) +  
0.009176*sin(14*2*pi*t) + 
0.007127*sin(18*2*pi*t); 
 
yall = @(t)  
0.0644*sin(2*2*pi*t) +  
0.0215*sin(6*2*pi*t) +  
0.0129*sin(10*2*pi*t) +  
0.009176*sin(14*2*pi*t) + 
0.007127*sin(18*2*pi*t) + 
0.005824*sin(22*2*pi*t) + 
0.004982*sin(26*2*pi*t) + 
0.004311*sin(30*2*pi*t) + 
0.003762*sin(34*2*pi*t) + 
0.003391*sin(38*2*pi*t) + 
0.003096*sin(42*2*pi*t) + 
0.002776*sin(46*2*pi*t) + 
0.002567*sin(50*2*pi*t) + 
0.002328*sin(54*2*pi*t) + 
0.002242*sin(58*2*pi*t) +  
0.00212*sin(62*2*pi*t) +  
0.001971*sin(66*2*pi*t) + 
0.001811*sin(70*2*pi*t) +  
0.00177*sin(74*2*pi*t) +  
0.001594*sin(78*2*pi*t) + 
0.001559*sin(82*2*pi*t); 
 
% Part 2 
% time and amplitude of first 20 peaks: 
time = [0.49 0.5523 0.6236 0.6944 0.7652 0.836 
0.907 0.9776 1.0489 1.1192 1.19 1.2605 1.331 
1.401 1.4715 1.5418 1.6124 1.6831 1.7537 1.8245]; 
amp = [2.08 1.958 1.7969 1.7041 1.6455 1.597 
1.5576 1.5186 1.499 1.4551 1.441 1.4112 1.3965 
1.3672 1.3574 1.333 1.3232 1.2988 1.2891 1.2647]; 
 
% Exponential fit of amplitude curve 
p = polyfit(log(time),log(amp),1)  % Exponential fit 
m = p(1) 
b = exp(p(2)) 

fit = @(time) b*time.^m 
% Obtain delta and T using equation 
for i = 1:9 
    delta(i) = log(amp(i)/amp(i+1)); 
    T(i) = time(i+1)-time(i); 
end 
 
Natural Frequency Calulation: 
E = 10000 ksi 
I = 1/12w*t^3 = 1/12 * 1 * 0.5^3 
Rho = d * A = 9.754369 * 10^-2 
Beta1L = 1.875 
Beta2L = 4.694 
Using equation 8:  
wr = ((betaL)^2 * sqrt(EI/(rho*L)))*1/2pi  [Hz] 
We get: 
w1 = 15.87 Hz 
w2 = 99.48 Hz 
 
% Damping factor calculation. 
w1 =  15.87 
zeta = delta/(2*pi) 
zeta1 = - m / w1 
 
% Part 3 
% frSP is the matrix obtained in Part 3 of the  
% Spectral Peak 
 
table = [frSP(:,1) frSP(:,3) frSP(:,5)] 
A50in = table(end,2) 
A50out = table(end,3) 
ratio = (table(:,3)*A50in)./(table(:,2)*A50out) 
wwr = table(:,1)/13.5 


